Published on

ARTS打卡:第 2 周

Authors
  • avatar
    Name
    Jeffrey Wang
    Twitter

第 1 周 (20190805-20190811)

ARTS 是什么?

Algorithm:每周至少做一个 leetcode 的算法题;

Review:阅读并点评至少一篇英文技术文章;

Tip:学习至少一个技术技巧;

Share:分享一篇有观点和思考的技术文章。

Algorithm:每周至少做一个 leetcode 的算法题

5. 最长回文子串

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: "babad" 输出: "bab" 注意: "aba" 也是一个有效答案。

示例 2:

输入: "cbbd" 输出: "bb"

解法 5: Manacher's Algorithm 马拉车算法

马拉车算法 Manacher‘s Algorithm 是用来查找一个字符串的最长回文子串的线性方法,由一个叫 Manacher 的人在 1975 年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性。

首先我们解决下奇数和偶数的问题,在每个字符间插入 "#",并且为了使得扩展的过程中,到边界后自动结束,在两端分别插入 "^" 和 "$",两个不可能在字符串中出现的字符,这样中心扩展的时候,判断两端字符是否相等的时候,如果到了边界就一定会不相等,从而出了循环。经过处理,字符串的长度永远都是奇数了。

首先我们用一个数组 P 保存从中心扩展的最大个数,而它刚好也是去掉 "#" 的原字符串的总长度。例如下图中下标是 6 的地方,可以看到 P[ 6 ] 等于 5,所以它是从左边扩展 5 个字符,相应的右边也是扩展 5 个字符,也就是 "#c#b#c#b#c#"。而去掉 # 恢复到原来的字符串,变成 "cbcbc",它的长度刚好也就是 5。

求原字符串下标

用 P 的下标 i 减去 P [ i ],再除以 2,就是原字符串的开头下标了。

例如我们找到 P[ i ] 的最大值为 5,也就是回文串的最大长度是 5,对应的下标是 6,所以原字符串的开头下标是(6 - 5 )/ 2 = 0。所以我们只需要返回原字符串的第 0 到 第(5 - 1)位就可以了。

求每个 P [ i ]

接下来是算法的关键了,它充分利用了回文串的对称性。

我们用 C 表示回文串的中心,用 R 表示回文串的右边半径。所以 R = C + P[ i ]。C 和 R 所对应的回文串是当前循环中 R 最靠右的回文串。

让我们考虑求 P [ i ] 的时候,如下图。

用 i_mirror 表示当前需要求的第 i 个字符关于 C 对应的下标。

我们现在要求 P [ i ],如果是用中心扩展法,那就向两边扩展比对就行了。但是我们其实可以利用回文串 C 的对称性。i 关于 C 的对称点是 i_mirror,P [ i_mirror ] = 3,所以 P [ i ] 也等于 3。

但是有三种情况将会造成直接赋值为 P [ i_mirror ] 是不正确的,下边一一讨论。

1. 超出了 R

当我们要求 P [ i ] 的时候,P [ mirror ] = 7,而此时 P [ i ] 并不等于 7,为什么呢,因为我们从 i 开始往后数 7 个,等于 22,已经超过了最右的 R,此时不能利用对称性了,但我们一定可以扩展到 R 的,所以 P [ i ] 至少等于 R - i = 20 - 15 = 5,会不会更大呢,我们只需要比较 T [ R+1 ] 和 T [ R+1 ]关于 i 的对称点就行了,就像中心扩展法一样一个个扩展。

2. P [ i_mirror ] 遇到了原字符串的左边界

此时 P [ i_mirror ] = 1,但是 P [ i ] 赋值成 1 是不正确的,出现这种情况的原因是 P [ i_mirror ] 在扩展的时候首先是 "#" == "#",之后遇到了 "^" 和另一个字符比较,也就是到了边界,才终止循环的。而 P [ i ] 并没有遇到边界,所以我们可以继续通过中心扩展法一步一步向两边扩展就行了。

3. i 等于了 R

此时我们先把 P [ i ] 赋值为 0,然后通过中心扩展法一步一步扩展就行了。

考虑 C 和 R 的更新

就这样一步一步的求出每个 P [ i ],当求出的 P [ i ] 的右边界大于当前的 R 时,我们就需要更新 C 和 R 为当前的回文串了。因为我们必须保证 i 在 R 里面,所以一旦有更右边的 R 就要更新 R。

此时的 P [ i ] 求出来将会是 3,P [ i ] 对应的右边界将是 10 + 3 = 13,所以大于当前的 R,我们需要把 C 更新成 i 的值,也就是 10,R 更新成 13。继续下边的循环。

public String preProcess(String s) {
    int n = s.length();
    if (n == 0) {
        return "^$";
    }
    String ret = "^";
    for (int i = 0; i < n; i++)
        ret += "#" + s.charAt(i);
    ret += "#$";
    return ret;
}

// 马拉车算法
public String longestPalindrome2(String s) {
    String T = preProcess(s);
    int n = T.length();
    int[] P = new int[n];
    int C = 0, R = 0;
    for (int i = 1; i < n - 1; i++) {
        int i_mirror = 2 * C - i;
        if (R > i) {
            P[i] = Math.min(R - i, P[i_mirror]);// 防止超出 R
        } else {
            P[i] = 0;// 等于 R 的情况
        }

        // 碰到之前讲的三种情况时候,需要利用中心扩展法
        while (T.charAt(i + 1 + P[i]) == T.charAt(i - 1 - P[i])) {
            P[i]++;
        }

        // 判断是否需要更新 R
        if (i + P[i] > R) {
            C = i;
            R = i + P[i];
        }

    }

    // 找出 P 的最大值
    int maxLen = 0;
    int centerIndex = 0;
    for (int i = 1; i < n - 1; i++) {
        if (P[i] > maxLen) {
            maxLen = P[i];
            centerIndex = i;
        }
    }
    int start = (centerIndex - maxLen) / 2; //最开始讲的求原字符串下标
    return s.substring(start, start + maxLen);
}

时间复杂度:for 循环里边套了一层 while 循环,难道不是 O(n²)?不!其实是 O(n)。不严谨的想一下,因为 while 循环访问 R 右边的数字用来扩展,也就是那些还未求出的节点,然后不断扩展,而期间访问的节点下次就不会再进入 while 了,可以利用对称得到自己的解,所以每个节点访问都是常数次,所以是 O(n)。

空间复杂度:O(n)。

总结

时间复杂度从三次方降到了一次,美妙!这里两次用到了动态规划去求解,初步认识了动态规划,就是将之前求的值保存起来,方便后边的计算,使得一些多余的计算消失了。并且在动态规划中,通过观察数组的利用情况,从而降低了空间复杂度。而 Manacher 算法对回文串对称性的充分利用,不得不让人叹服,自己加油啦!

Review:阅读并点评至少一篇英文技术文章

Tip:学习至少一个技术技巧

Share:分享一篇有观点和思考的技术文章